The Insufficient Capacity error in Kubernetes typically occurs when the cluster does not have enough resources (CPU, memory, storage, or specific hardware like GPUs) to schedule a pod. Let's break it down:

🔴 Causes of the Insufficient Capacity Error:

  1. Node Resource Exhaustion – All available nodes lack sufficient CPU/memory.

  2. Pod Resource Requests Exceed Available Resources – The requested resources are too high.

  3. Tainted or Unschedulable Nodes – Nodes might have taints preventing scheduling.

  4. Affinity and Anti-Affinity Constraints – Pods might have rules restricting where they can run.

  5. Resource Limits on Namespaces – Namespace-level quotas might be exhausted.

  6. Pod Disruption Budget (PDB) Restrictions – May prevent new pods from starting.

  7. GPU or Special Hardware Constraints – If specific hardware is needed but unavailable.

🛠 Troubleshooting the Insufficient Capacity Error:

  1. Check Node Resource Availability:

    bash

    kubectl describe node <node-name>

    Look for Allocatable vs Capacity values.

  2. Check Pod Scheduling Events:

    bash

    kubectl describe pod <pod-name>

    Look for messages like "0/5 nodes available: insufficient memory"

  3. List Available Nodes:

    bash

    kubectl get nodes

    Ensure enough nodes are in Ready state.

  4. Check Resource Requests & Limits:

    bash

    kubectl get pod <pod-name> -o yaml

    Adjust requests in the deployment YAML if needed.

  5. Inspect Node Affinity & Tolerations:

    bash

    kubectl describe pod <pod-name>

    Ensure proper affinity/toleration settings.

  6. Check Namespace Quotas:

    bash

    kubectl get resourcequota --all-namespaces

  7. Monitor Cluster Metrics (Optional):

    bash

    kubectl top nodes kubectl top pods

    Identify resource-heavy workloads.

Preventive Approaches:

  1. Autoscaling

    • Enable Cluster Autoscaler:

      yaml

      apiVersion: autoscaling/v1 kind: HorizontalPodAutoscaler metadata: name: my-app-hpa spec: maxReplicas: 10 minReplicas: 2 targetCPUUtilizationPercentage: 70

    • Configure Cluster Autoscaler for auto-scaling nodes.

  2. Resource Requests & Limits:

    • Define optimal requests:

      yaml

      resources: requests: cpu: "500m" memory: "512Mi" limits: cpu: "1" memory: "1Gi"

  3. Node Pool Expansion:

    • Increase nodes manually in cloud provider settings.

  4. Optimize Workloads:

    • Scale down less critical workloads.

  5. Monitor with Prometheus & Grafana:

    • Set up alerts for high resource usage.

Reply

or to participate

Keep Reading

No posts found